之前在网上看到一个非常不错的矩阵按键驱动架构,特此记录一下。
首先来看一下矩阵按键原理图:
//首先先定义一下这8个变量:
sbit KEY_IN_1 = P2 ^ 4;
sbit KEY_IN_2 = P2 ^ 5;
sbit KEY_IN_3 = P2 ^ 6;
sbit KEY_IN_4 = P2 ^ 7;
sbit KEY_OUT_1 = P2 ^ 3;
sbit KEY_OUT_2 = P2 ^ 2;
sbit KEY_OUT_3 = P2 ^ 1;
sbit KEY_OUT_4 = P2 ^ 0;
//接着给这16个按键给个数值:
const unsigned char KeyCodeMap[4][4] =
{
//矩阵按键编号到标准键盘键码的映射表
{0x31, 0x32, 0x33, 0x26}, //数字键1、数字键2、数字键3、向上键
{0x34, 0x35, 0x36, 0x25}, //数字键4、数字键5、数字键6、向左键
{0x37, 0x38, 0x39, 0x28}, //数字键7、数字键8、数字键9、向下键
{0x30, 0x1B, 0x0D, 0x27} //数字键0、ESC键、 回车键、 向右键
};
//全部矩阵按键的当前状态
unsigned char KeySta[4][4] =
{
{1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1}
};
/* 按键动作函数,根据键码执行相应的操作,keycode-按键键码 */
void KeyAction(unsigned char keycode)
{
if ((keycode >= 0x30) && (keycode <= 0x39)) //输入0-9的数字
{
//do something
}
else if (keycode == 0x25) //向左键
{
//do something
}
else if (keycode == 0x26) //向上键
{
//do something
}
else if (keycode == 0x27) //向右键
{
//do something
}
else if (keycode == 0x28) //向下键
{
//do something
}
else if (keycode == 0x0D) //回车键
{
//do something
}
else if (keycode == 0x1B) //Esc键
{
//do something
}
}
/* 按键驱动函数,检测按键动作,调度相应动作函数,需在主循环中调用 */
void KeyDriver()
{
unsigned char i, j;
static unsigned char backup[4][4] = //按键值备份,保存前一次的值
{
{1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1}
};
for (i = 0; i < 4; i++) //循环检测4*4的矩阵按键
{
for (j = 0; j < 4; j++)
{
if (backup[i][j] != KeySta[i][j]) //检测按键动作
{
if (backup[i][j] != 0) //按键按下时执行动作
{
KeyAction(KeyCodeMap[i][j]); //调用按键动作函数
}
backup[i][j] = KeySta[i][j]; //刷新前一次的备份值
}
}
}
}
/* 按键扫描函数,需在定时中断中调用,推荐调用间隔1ms */
void KeyScan()
{
unsigned char i;
static unsigned char keyout = 0; //矩阵按键扫描输出索引
static unsigned char keybuf[4][4] = //矩阵按键扫描缓冲区
{
{0xFF, 0xFF, 0xFF, 0xFF},
{0xFF, 0xFF, 0xFF, 0xFF},
{0xFF, 0xFF, 0xFF, 0xFF},
{0xFF, 0xFF, 0xFF, 0xFF}
};
//将一行的4个按键值移入缓冲区
keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN_1;
keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN_2;
keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN_3;
keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN_4;
//消抖后更新按键状态
for (i = 0; i < 4; i++) //每行4个按键,所以循环4次
{
if ((keybuf[keyout][i] & 0x0F) == 0x00)
{
//连续4次扫描值为0,即4*4ms内都是按下状态时,可认为按键已稳定的按下
KeySta[keyout][i] = 0;
}
else if ((keybuf[keyout][i] & 0x0F) == 0x0F)
{
//连续4次扫描值为1,即4*4ms内都是弹起状态时,可认为按键已稳定的弹起
KeySta[keyout][i] = 1;
}
}
//执行下一次的扫描输出
keyout++; //输出索引递增
keyout = keyout & 0x03; //索引值加到4即归零
switch (keyout) //根据索引,释放当前输出引脚,拉低下次的输出引脚
{
case 0:
KEY_OUT_4 = 1;
KEY_OUT_1 = 0;
break;
case 1:
KEY_OUT_1 = 1;
KEY_OUT_2 = 0;
break;
case 2:
KEY_OUT_2 = 1;
KEY_OUT_3 = 0;
break;
case 3:
KEY_OUT_3 = 1;
KEY_OUT_4 = 0;
break;
default:
break;
}
}
void InterruptTimer0() interrupt 1
{
KeyScan(); //调用按键扫描函数
}
void main(void)
{
while (1)
{
KeyDriver(); //调用按键驱动函数
}
}
转载请注明:guanjianhe的博客 » 按键驱动架构